Reduced axonopathy and enhanced remyelination after chronic demyelination in fibroblast growth factor 2 (Fgf2)-null mice: differential detection with diffusion tensor imaging

成纤维细胞生长因子 2 (Fgf2) 基因敲除小鼠慢性脱髓鞘后轴突病变减轻、髓鞘再生增强:利用扩散张量成像进行差异检测

阅读:6
作者:Jennifer E Tobin, Mingqiang Xie, Tuan Q Le, Sheng-Kwei Song, Regina C Armstrong

Abstract

Chronic central nervous system demyelinating diseases result in long-term disability because of limited remyelination capacity and cumulative damage to axons. Corpus callosum demyelination in mice fed cuprizone provides a reproducible model of chronic demyelination in which the demyelinating agent can be removed to test modifications that promote recovery and to develop noninvasive neuroimaging techniques for monitoring changes in myelin and axons. We used the cuprizone model in mice with genetic deletion of fibroblast growth factor 2 (Fgf2) to determine the impact of FGF2 on axon pathology and remyelination after chronic demyelination. We also evaluated the ability of quantitative magnetic resonance diffusion tensor imaging (DTI) to distinguish the corresponding pathological changes in axons and myelin during the progression of demyelination and remyelination. During the recovery period after chronic demyelination, Fgf2-null mice exhibited enhanced remyelination that was detected using DTI measures of radial diffusivity and confirmed by electron microscopic analysis of the proportion of remyelinated axons. Ultrastructural analysis also demonstrated reduced axonal atrophy in chronically demyelinated Fgf2-null versus wild-type mice. This difference in axon atrophy was further demonstrated as reduced immunohistochemical detection of neurofilament dephosphorylation in Fgf2-null mice. Diffusion tensor imaging axial and radial diffusivity measures did not differentiate Fgf2-null mice from wild-type mice to correlate with changes in axonal atrophy during chronic demyelination. Overall, these findings demonstrate that attenuation of FGF2 signaling promotes neuroprotection of axons and remyelination, suggesting that FGF2 is an important negative regulator of recovery after chronic demyelination.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。