Stress fiber anisotropy contributes to force-mode dependent chromatin stretching and gene upregulation in living cells

应力纤维各向异性导致活细胞中力模式依赖的染色质拉伸和基因上调

阅读:4
作者:Fuxiang Wei #, Xiangyu Xu #, Cunyu Zhang #, Yawen Liao #, Baohua Ji, Ning Wang

Abstract

Living cells and tissues experience various complex modes of forces that are important in physiology and disease. However, how different force modes impact gene expression is elusive. Here we apply local forces of different modes via a magnetic bead bound to the integrins on a cell and quantified cell stiffness, chromatin deformation, and DHFR (dihydrofolate reductase) gene transcription. In-plane stresses result in lower cell stiffness than out-of-plane stresses that lead to bead rolling along the cell long axis (i.e., alignment of actin stress fibers) or at different angles (90° or 45°). However, chromatin stretching and ensuing DHFR gene upregulation by the in-plane mode are similar to those induced by the 45° stress mode. Disrupting stress fibers abolishes differences in cell stiffness, chromatin stretching, and DHFR gene upregulation under different force modes and inhibiting myosin II decreases cell stiffness, chromatin deformation, and gene upregulation. Theoretical modeling using discrete anisotropic stress fibers recapitulates experimental results and reveals underlying mechanisms of force-mode dependence. Our findings suggest that forces impact biological responses of living cells such as gene transcription via previously underappreciated means.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。