The effect of histone deacetylase inhibitors on the efficiency of the CRISPR/Cas9 system

组蛋白去乙酰化酶抑制剂对CRISPR/Cas9系统效率的影响

阅读:5
作者:Ymer Björnson, Codey Y Huang, Jaedyn L Rollins, Guadalupe Castañeda, Navneet Kaur, Emiko Yamamoto, Jennifer M Johnston

Abstract

The CRISPR/Cas9 technology is a prominent genome-editing tool capable of producing a double-strand break in the genome. However, the modification of hematopoietic stem cells via the homology-directed repair pathway is still inefficient. Therefore, we hypothesize that histone deacetylase inhibitors, such as valproic acid (VPA) and sodium butyrate (NaB), could enhance HDR efficiency by increasing the accessibility of the genome-editing machinery. To address the potential utilization of HDAC inhibitors therapeutically, we began by assessing the effect of VPA and NaB on two cell lines representative of the two hematopoietic stem cell lineages. No statistically significant effect on cell growth or viability was observed at concentrations as high as 5 mM. At a concentration as low as 0.005 mM NaB, an enhancement in CRISPR cutting efficiency was evidenced in both cell lines. This enhancement did not appear to be locus-specific. However, an enhancement in cutting efficiency following VPA treatment does appear to be. HDR efficiency was enhanced greater than two-fold with the use of 0.005 mM VPA. These results are promising and suggest the consideration of treatment with an HDAC inhibitor in CRISPR/Cas9 genome editing protocols.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。