Ryanodine receptor-bound calmodulin is essential to protect against catecholaminergic polymorphic ventricular tachycardia

瑞安诺丁受体结合钙调蛋白对于预防儿茶酚胺能多形性室性心动过速至关重要

阅读:5
作者:Yoshihide Nakamura, Takeshi Yamamoto, Shigeki Kobayashi, Masaki Tamitani, Yoriomi Hamada, Go Fukui, Xiaojuan Xu, Shigehiko Nishimura, Takayoshi Kato, Hitoshi Uchinoumi, Tetsuro Oda, Shinichi Okuda, Masafumi Yano

Abstract

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is caused by a single point mutation in the cardiac type 2 ryanodine receptor (RyR2). Using a knockin (KI) mouse model (R2474S/+), we previously reported that a single point mutation within the RyR2 sensitizes the channel to agonists, primarily mediated by defective interdomain interaction within the RyR2 and subsequent dissociation of calmodulin (CaM) from the RyR2. Here, we examined whether CPVT can be genetically rescued by enhancing the binding affinity of CaM to the RyR2. We first determined whether there is a possible amino acid substitution within the CaM-binding domain in the RyR2 (3584-3603 residues) that can enhance its binding affinity to CaM and found that V3599K substitution showed the highest binding affinity of CaM to the CaM-binding domain. Hence, we generated a heterozygous KI mouse model (V3599K/+) with a single amino acid substitution in the CaM-binding domain of the RyR2 and crossbred it with the heterozygous CPVT-associated R2474S/+-KI mouse to obtain a double-heterozygous R2474S/V3599K-KI mouse model. The CPVT phenotypes - bidirectional or polymorphic ventricular tachycardia, spontaneous Ca2+ transients, and Ca2+ sparks - were all inhibited in the R2474S/V3599K mice. Thus, enhancement of the CaM-binding affinity of the RyR2 is essential to prevent CPVT-associated arrhythmogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。