UHRF1-mediated tumor suppressor gene inactivation in nonsmall cell lung cancer

UHRF1 介导的非小细胞肺癌肿瘤抑制基因失活

阅读:5
作者:Alexandros Daskalos, Urszula Oleksiewicz, Anastasia Filia, George Nikolaidis, George Xinarianos, John R Gosney, Angeliki Malliri, John K Field, Triantafillos Liloglou

Background

The UHRF1 gene possesses an essential role in DNA methylation maintenance, but its contribution to tumor suppressor gene hypermethylation in primary human cancers currently remains unclear.

Conclusions

Our data demonstrate that UHRF1 is a key epigenetic switch, which controls cell cycle in nonsmall cell lung carcinoma through its ability to sustain the transcriptional silencing of tumor suppressor genes by maintaining their promoters in a hypermethylated status. Thus, UHRF1 should be considered, along with DNMTs, among the potential targets for cancer treatment and/or therapeutic stratification.

Methods

mRNA expression levels of UHRF1, DNMT1, DNMT3A, DNMT3B, and E2F1 were evaluated in 105 primary nonsmall cell lung carcinomas by quantitative polymerase chain reaction. The methylation status of CDKN2A and RASSF1 promoters was examined by pyrosequencing. UHRF1 was knocked down by short hairpin RNA in A549 lung adenocarcinoma cells.

Results

All 4 genes were overexpressed in a coordinated manner in the lung tumor tissues, and their expression correlated with that of E2F1. Higher UHRF1 expression in tumor tissues correlated with the hypermethylation of CDKN2A (P = .005) and RASSF1 promoters (P = .034), and the relationship with a combined epigenotype was even stronger (P = 2.3 × 10(-4) ). When UHRF1 was knocked down in A549 lung adenocarcinoma cells, lower methylation levels of RASSF1, CYGB, and CDH13 promoters were observed. Also, UHRF1 knockdown clones demonstrated reduced proliferation and decreased cell migration properties. Conclusions: Our data demonstrate that UHRF1 is a key epigenetic switch, which controls cell cycle in nonsmall cell lung carcinoma through its ability to sustain the transcriptional silencing of tumor suppressor genes by maintaining their promoters in a hypermethylated status. Thus, UHRF1 should be considered, along with DNMTs, among the potential targets for cancer treatment and/or therapeutic stratification.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。