Background
The development of urothelial malignancy is not solely a consequence of loss of proliferation constraints but also involves loss of cellular differentiation, defined histopathologically as grade. Although tumour grade is an independent prognostic marker for urothelial carcinoma (UC), the molecular events underpinning the loss of urothelial differentiation are poorly understood.
Conclusions
Overexpression of hTERT promotes development of an immortalised differentiation-insensitive urothelial cell phenotype. Although such cells offer a useful insight into the grade/stage paradigm of UC, they have limited value for investigating normal urothelial cell/tissue biology and physiology.
Objective
To examine the effect of gene alterations implicated in UC development on the ability of human urothelial cells to undergo molecular differentiation and form a functional urothelial barrier. Design, setting, and participants: Laboratory study. Intervention: Normal human urothelial (NHU) cell cultures were transduced with recombinant retroviruses to produce stable sublines overexpressing wild-type or oncogenic mutated fibroblast growth factor receptor 3 or human telomerase reverse transcriptase (hTERT). Previously generated NHU sublines carrying dominant-negative CDK4 and p53 mutant genes or immortalised with the human papillomavirus 16 E6 oncoprotein were included. Measurements: The activity of introduced transgenes was demonstrated by comparing phenotypes of transgene-expressing and isogenic control NHU cells. Modified and control sublines were compared for changes in generational potential (life span) and capacity to respond to differentiation-inducing signals by transcript expression of uroplakins 2 and 3. The ability to form a barrier epithelium was assessed by measuring the transepithelial electrical resistance.
