Solvent-Dependent Pyranopterin Cyclization in Molybdenum Cofactor Model Complexes

钼辅因子模型复合物中溶剂依赖性吡喃蝶呤环化

阅读:6
作者:Benjamin R Williams, Douglas Gisewhite, Anna Kalinsky, Alisha Esmail, Sharon J Nieter Burgmayer

Abstract

The conserved pterin dithiolene ligand that coordinates molybdenum (Mo) in the cofactor (Moco) of mononuclear Mo enzymes can exist in both a tricyclic pyranopterin dithiolene form and as a bicyclic pterin-dithiolene form as observed in protein crystal structures of several bacterial molybdoenzymes. Interconversion between the tricyclic and bicyclic forms via pyran scission and cyclization has been hypothesized to play a role in the catalytic mechanism of Moco. Therefore, understanding the interconversion between the tricyclic and bicyclic forms, a type of ring-chain tautomerism, is an important aspect of study to understand its role in catalysis. In this study, equilibrium constants (K(eq)) as well as enthalpy, entropy, and free energy values are obtained for pyran ring tautomerism exhibited by two Moco model complexes, namely, (Et4N)[Tp*Mo(O)(S2BMOPP)] (1) and (Et4N)[Tp*Mo(O)(S2PEOPP)] (2), as a solvent-dependent equilibrium process. Keq values obtained from (1)H NMR data in seven deuterated solvents show a correlation between solvent polarity and tautomer form, where solvents with higher polarity parameters favor the pyran form.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。