The Restriction-Modification Systems of Clostridium carboxidivorans P7

Clostridium carboxidivorans P7 的限制修饰系统

阅读:9
作者:Patrick Kottenhahn, Gabriele Philipps, Boyke Bunk, Cathrin Spröer, Stefan Jennewein

Abstract

Clostridium carboxidivorans P7 (DSM 15243) is a bacterium that converts syngas (a mixture of CO, H2, and CO2) into hexanol. An optimized and scaled-up industrial process could therefore provide a renewable source of fuels and chemicals while consuming industry waste gases. However, the genetic engineering of this bacterium is hindered by its multiple restriction-modification (RM) systems: the genome of C. carboxidivorans encodes at least ten restriction enzymes and eight methyltransferases (MTases). To gain insight into the complex RM systems of C. carboxidivorans, we analyzed genomic methylation patterns using single-molecule real-time (SMRT) sequencing and bisulfite sequencing. We identified six methylated sequence motifs. To match the methylation sites to the predicted MTases of C. carboxidivorans, we expressed them individually in Escherichia coli for functional characterization. Recognition motifs were identified for all three Type I MTases (CAYNNNNNCTGC/GCAGNNNNNRTG, CCANNNNNNNNTCG/CGANNNNNNNNTGG and GCANNNNNNNTNNCG/CGNNANNNNNNNTGC), two Type II MTases (GATAAT and CRAAAAR), and a single Type III MTase (GAAAT). However, no methylated recognition motif was found for one of the three Type II enzymes. One recognition motif that was methylated in C. carboxidivorans but not in E. coli (AGAAGC) was matched to the remaining Type III MTase through a process of elimination. Understanding these enzymes and the corresponding recognition sites will facilitate the development of genetic tools for C. carboxidivorans that can accelerate the industrial exploitation of this strain.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。