One-Step Dry Coating of Hybrid ZnO-WO3 Nanosheet Photoanodes for Photoelectrochemical Water Splitting with Composition-Dependent Performance

一步干法涂覆混合 ZnO-WO3 纳米片光阳极,用于光电化学水分解,性能取决于成分

阅读:5
作者:Muhammad Shehroze Malik, Deepto Roy, Doo-Man Chun, A G Abd-Elrahim

Abstract

In this study, the potential of zinc oxide (ZnO), tungsten oxide (WO3), and their composites (ZnO-WO3) as photoanodes for photoelectrochemical (PEC) water splitting was investigated. ZnO-WO3 nanocomposites (NCs) were deposited on fluorine-doped tin oxide substrates at room temperature using a one-step dry coating process, the nanoparticle deposition system, with no post-processes. Different compositions of ZnO-WO3 NCs were optimized to enhance the kinetics of the PEC water-splitting reaction. Surface morphology analysis revealed the transformation of microsized particle nanosheets (NS) powder into nanosized particle nanosheets (NS) across all photoanodes. The optical characteristics of ZnO-WO3 photoanodes were scrutinized using diffuse reflectance and photoluminescence emission spectroscopy. Of all the hybrid photoanodes tested, the photoanode containing 10 wt.% WO3 exhibited the lowest bandgap of 3.20 eV and the lowest emission intensity, indicating an enhanced separation of photogenerated carriers and solar energy capture. The photoelectrochemical results showed a 10% increase in the photocurrent with increasing WO3 content in ZnO-WO3 NCs, which is attributed to improved charge transfer kinetics and carrier segregation. The maximum photocurrent for a NC, i.e., 10 wt.% WO3, was recorded at 0.133 mA·cm-2 at 1.23V vs. a reversible hydrogen electrode (RHE). The observed improvement in photocurrent was nearly 22 times higher than pure WO3 nanosheets and 7.3 times more than that of pure ZnO nanosheets, indicating the composition-dependence of PEC performance, where the synergy requirement strongly relies on utilizing the optimal ZnO-WO3 ratio in the hybrid NCs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。