Candida tropicalis induces NLRP3 inflammasome activation via glycogen metabolism-dependent glycolysis and JAK-STAT1 signaling pathway in myeloid-derived suppressor cells to promote colorectal carcinogenesis

热带念珠菌通过糖原代谢依赖性糖酵解和JAK-STAT1信号通路诱导髓系抑制细胞中NLRP3炎症小体活化,促进结直肠癌发生

阅读:5
作者:Zhiyong Zhang, Ying Chen, Yuxin Yin, Yuxi Chen, Qianyu Chen, Ziqian Bing, Yaojun Zheng, Yayi Hou, Sunan Shen, Yitian Chen, Tingting Wang

Abstract

Our previous studies showed that Candida tropicalis promoted colorectal cancer (CRC) by activating the function of MDSCs. However, underlying molecular mechanisms remains to be further investigated. In the present study, we indicated that C. tropicalis induced NLRP3 inflammasome activation through Dectin-3 in myeloid-derived suppressor cells (MDSCs). Mechanistically, we identified that C. tropicalis significantly enhanced the levels of glycolysis dependent on glycogen metabolism in MDSCs, which was required for NLRP3 inflammasome activation. C. tropicalis-induced NLRP3 inflammasome activation of MDSCs required the first priming signal and the second activation signal. For one thing, C. tropicalis promoted transcription of Nlrp3, Pro-caspase-1 and IL-1β genes through activation of JAK-STAT1 signaling pathway. For another, mtROS as the second activation signal mediated C. tropicalis-induced activation of NLRP3 inflammasome. Pharmacological inhibition of NLRP3 inflammasome activation abolished the pro-tumorigenic effect of C. tropicalis in an AOM/DSS-induced CAC mice model and significantly reduced C. tropicalis-promoted infiltration of MDSCs in colon tumors. Finally, in human CRC samples, the expression of STAT1, p-STAT1 and NLRP3 was elevated in MDSCs infiltrated by CRC. Collectively, these findings shed light on a previously unidentified mechanism by which C. tropicalis induces NLRP3 inflammasome activation in MDSCs to contribute to the progression of CRC. And STAT1-NLRP3 axis might represent a prospective therapeutic target for the treatment of CRC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。