Down-regulated lncRNA DLX6-AS1 inhibits tumorigenesis through STAT3 signaling pathway by suppressing CADM1 promoter methylation in liver cancer stem cells

下调lncRNA DLX6-AS1通过抑制肝癌干细胞中的CADM1启动子甲基化,通过STAT3信号通路抑制肿瘤发生

阅读:8
作者:Dong-Mei Wu #, Zi-Hui Zheng #, Ying-Bo Zhang, Shao-Hua Fan, Zi-Feng Zhang, Yong-Jian Wang, Yuan-Lin Zheng, Jun Lu

Background

Liver cancer stem cells (LCSCs) are a small subset of cells characterized by unlimited self-renewal, cell differentiation, and uncontrollable cellular growth. LCSCs are also resistant to conventional therapies and are thus believed to be held responsible for causing treatment failure of hepatocellular carcinoma (HCC). It has been recently found that long non-coding RNAs (lncRNAs) are important regulators in HCC. This present study aims to explore the underlying mechanism of how lncRNA DLX6-AS1 influences the development of LCSCs and HCC.

Conclusion

This study demonstrated that down-regulated lncRNA DLX6-AS1 may inhibit the stem cell properties of LCSCs through upregulation of CADM1 by suppressing the methylation of the CADM1 promoter and inactivation of the STAT3 signaling pathway.

Methods

A microarray-based analysis was performed to initially screen differentially expressed lncRNAs associated with HCC. We then analyzed the lncRNA DLX6-AS1 levels as well as CADM1 promoter methylation. The mRNA and protein expression of CADM1, STAT3, CD133, CD13, OCT-4, SOX2, and Nanog were then detected. We quantified our

Results

LncRNA DLX6-AS1 was upregulated in HCC. The silencing of lncRNA DLX6-AS1 was shown to reduce and inhibit spheroid formation, colony formation, proliferation, and tumor formation abilities, as well as attenuate CD133, CD13, OCT-4, SOX2, and Nanog expression in LCSCs. Furthermore, downregulation of lncRNA DLX6-AS1 contributed to a reduction in CADM1 promoter methylation via suppression of DNMT1, DNMT3a, and DNMT3b in LCSCs and inactivating the STAT3 signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。