Effects of Morphology vs. Cell-Cell Interactions on Endothelial Cell Stiffness

形态与细胞间相互作用对内皮细胞硬度的影响

阅读:7
作者:Kimberly M Stroka, Helim Aranda-Espinoza

Abstract

Biological processes such as atherogenesis, wound healing, cancer cell metastasis, and immune cell transmigration rely on a delicate balance between Cell-Cell and cell-substrate adhesion. Cell mechanics have been shown to depend on substrate factors such as stiffness and ligand presentation, while the effects of Cell-Cell interactions on the mechanical properties of cells has received little attention. Here, we use atomic force microscopy to measure the Young's modulus of live human umbilical vein endothelial cells (HUVECs). In varying the degree of Cell-Cell contact in HUVECs (single cells, groups, and monolayers), we observe that increased cell stiffness correlates with an increase in cell area. Further, we observe that HUVECs stiffen as they spread onto a glass substrate. When we weaken Cell-Cell junctions (i.e., through a low dose of cytochalasin B or treatment with a VE-cadherin antibody), we observe that cell-substrate adhesion increases, as measured by focal adhesion size and density, and the stiffness of cells within the monolayer approaches that of single cells. Our results suggest that while morphology can roughly be used to predict cell stiffness, Cell-Cell interactions may play a significant role in determining the mechanical properties of individual cells in tissues by careful maintenance of cell tension homeostasis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。