Intracellular Growth Inhibition and Host Immune Modulation of 3-Amino-1,2,4-triazole in Murine Brucellosis

3-氨基-1,2,4-三唑对小鼠布鲁氏菌病细胞内生长的抑制和宿主免疫调节

阅读:4
作者:Trang Thi Nguyen, Tran Xuan Ngoc Huy, Ched Nicole Turbela Aguilar, Alisha Wehdnesday Bernardo Reyes, Said Abdi Salad, Won-Gi Min, Hu-Jang Lee, Hyun-Jin Kim, John-Hwa Lee, Suk Kim

Abstract

Catalase, an antioxidant enzyme widely produced in mammalian cells and bacteria, is crucial to mitigating oxidative stress in hostile environments. This function enhances the intracellular survivability of various intracellular growth pathogens, including Brucella (B.) abortus. In this study, to determine whether the suppression of catalase can inhibit the intracellular growth of B. abortus, we employed 3-amino-1,2,4-triazole (3-AT), a catalase inhibitor, in both RAW 264.7 macrophage cells and an ICR mouse model during Brucella infection. The intracellular growth assay indicated that 3-AT exerts growth-inhibitory effects on B. abortus within macrophages. Moreover, it contributes to the accumulation of reactive oxygen species and the formation of nitric oxide. Notably, 3-AT diminishes the activation of the nucleus transcription factor (NF-κB) and modulates the cytokine secretion within infected cells. In our mouse model, the administration of 3-AT reduced the B. abortus proliferation within the spleens and livers of infected mice. This reduction was accompanied by a diminished immune response to infection, as indicated by the lowered levels of TNF-α, IL-6, and IL-10 and altered CD4+/CD8+ T-cell ratio. These results suggest the protective and immunomodulatory effects of 3-AT treatment against Brucella infection.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。