Phosphoproteomics identifies potential downstream targets of the integrin α2β1 inhibitor BTT-3033 in prostate stromal cells

磷酸化蛋白质组学鉴定前列腺基质细胞中整合素 α2β1 抑制剂 BTT-3033 的潜在下游靶点

阅读:3
作者:Bingsheng Li, Pan Li, Weiping Xia, Baiyang You, Qingfeng Yu, Bo Zhang, Ru Huang, Ruixiao Wang, Yuhan Liu, Zhi Chen, Yu Gan, Yao He, Martin Hennenberg, Christian G Stief, Xiang Chen

Background

Integrin α2β1 inhibitor BTT-3033 (1-(4-fluorophenyl)-N-methyl-N-[4[[(phenylamino)carbonyl]amino]phenyl]-1H-pyrazole-4-sulfonamide) was recently reported to inhibit neurogenic and thromboxane A2-induced human prostate smooth muscle contraction, and thus represents a target with a different inhibition spectrum than that of α1-blockers in benign prostate hyperplasia (BPH) treatments. Clarifying the underlying mechanisms of the inhibition effects will provide insights into the role of integrin α2β1 in prostate contraction and enable new intracellular targets for smooth muscle contraction to be explored.

Conclusions

In this study, we proposed that the mechanisms underlying the contractile and proliferative effects of integrin α2β1 are the LIM domain kinases, including the ZYX family, and substrates, including PLK1 and DVL2.

Methods

ProteomeHD was used to predict and enrich the top co-regulated proteins of integrin α2 (ITGA2). A phosphoproteomic analysis was conducted on human prostate stromal cells (WPMY-1) treated with 1 or 10 µM of BTT-3033 or solvent for controls. A clustering analysis was conducted to identify the intracellular targets that were inhibited in a dose-dependent manner. Gene ontology (GO) and annotation enrichments were conducted to examine any functional alterations and identify possible downstream targets. A Kinase-substrate enrichment analysis (KSEA) was conducted to identify kinases-substrate relationships.

Results

Enrichments of the actin cytoskeleton and guanosine triphosphatases (GTPases) signaling were predicted from the co-regulated proteins with ITGA2. LIM domain kinases, including LIM domain and actin-binding 1 (LIMA1), zyxin (ZYX), and thyroid receptor-interacting protein 6 (TRIP6), which are functionally associated with focal adhesions and the cytoskeleton, were present in the clusters with dose-dependent phosphorylation inhibition pattern. 15 substrates were dose-dependently inhibited according to the KSEA, including polo-like kinase 1 (PLK1), and GTPases signaling proteins, such as disheveled segment polarity protein 2 (DVL2). Conclusions: In this study, we proposed that the mechanisms underlying the contractile and proliferative effects of integrin α2β1 are the LIM domain kinases, including the ZYX family, and substrates, including PLK1 and DVL2.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。