The majority of infiltrating CD8 T lymphocytes in multiple sclerosis lesions is insensitive to enhanced PD-L1 levels on CNS cells

多发性硬化症病变中大多数浸润的 CD8 T 淋巴细胞对中枢神经系统细胞上增强的 PD-L1 水平不敏感

阅读:4
作者:Camille L Pittet, Jia Newcombe, Jack P Antel, Nathalie Arbour

Abstract

Central nervous system (CNS) cells locally modulate immune responses using numerous molecules that are not fully elucidated. Engagement of programmed death-1 (PD-1), expressed on activated T cells, by its ligands (PD-L1 or PD-L2) suppresses T-cell responses. Enhanced CNS PD-1 and PD-L1 expression has been documented in inflammatory murine models; however, human CNS data are still incomplete. We determined that human primary cultures of astrocytes, microglia, oligodendrocytes, or neurons expressed low or undetectable PD-L1 under basal conditions, but inflammatory cytokines significantly induced such expression, especially on astrocytes and microglia. Blocking PD-L1 expression in astrocytes using specific siRNA led to significantly increased CD8 T-cell responses (proliferation, cytokines, lytic enzyme). Thus, our results establish that inflamed human glial cells can express sufficient and functional PD-L1 to inhibit CD8 T cell responses. Extensive immunohistochemical analysis of postmortem brain tissues demonstrated a significantly greater PD-L1 expression in multiple sclerosis (MS) lesions compared with control tissues, which colocalized with astrocyte or microglia/macrophage cell markers. However, more than half of infiltrating CD8 T lymphocytes in MS lesions did not express PD-1, the cognate receptor. Thus, our results demonstrate that inflamed human CNS cells such as in MS lesions express significantly elevated PD-L1, providing a means to reduce CD8 T cell responses, but most of these infiltrating immune cells are devoid of PD-1 and thus insensitive to PD-L1/L2. Strategies aimed at inducing PD-1 on deleterious activated human CD8 T cells that are devoid of this receptor could provide therapeutic benefits since PD-L1 is already increased in the target organ.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。