Ha-Ras stabilization mediates pro-fibrotic signals in dermal fibroblasts

Ha-Ras 稳定介导真皮成纤维细胞中的促纤维化信号

阅读:4
作者:Silvia Smaldone, Jacopo Olivieri, Gabriele Luca Gusella, Gianluca Moroncini, Armando Gabrielli, Francesco Ramirez

Background

Scleroderma (systemic sclerosis; SSc) is a clinically heterogeneous and often lethal acquired disorder of the connective tissue that is characterized by vascular, immune/inflammatory and fibrotic manifestations. Tissue fibrosis is the main cause of morbidity and mortality in SSc and an unmet medical challenge, mostly because of our limited understanding of the molecular factors and signalling events that trigger and sustain disease progression. Recent evidence has correlated skin fibrosis in SSc with stabilization of proto-oncogene Ha-Ras secondary to auto-antibody stimulation of reactive oxygen species production. The goal of the present study was to explore the molecular connection between Ha-Ras stabilization and collagen I production, the main read-out of fibrogenesis, in a primary dermal fibroblast culture system that replicates the early stages of disease progression in SSc.

Conclusions

Our study shows for the first time that constitutively elevated Ha-Ras protein levels can directly stimulate Smad2/3 signalling and collagen I accumulation independently of TGFβ neo-synthesis and activation. This finding therefore implicates the Ha-Ras pathway with the early onset of fibrosis in SSc and implicitly identifies new therapeutic targets in SSc.

Results

Forced expression of proto-oncogene Ha-Ras in dermal fibroblasts demonstrated the promotion of an immediate collagen I up-regulation, as evidenced by enhanced activity of a collagen I-driven luciferase reporter plasmid and increased accumulation of endogenous collagen I proteins. Moreover, normal levels of Tgfβ transcripts and active transforming growth factor-beta (TGFβ) implied Ha-Ras stimulation of the canonical Smad2/3 signalling pathway independently of TGFβ production or activation. Heightened Smad2/3 signalling was furthermore correlated with greater Smad3 phosphorylation and Smad3 protein accumulation, suggesting that Ha-Ras may target both Smad2/3 activation and turnover. Additional in vitro evidence excluded a contribution of ERK1/2 signalling to improper Smad3 activity and collagen I production in cells that constitutively express Ha-Ras. Conclusions: Our study shows for the first time that constitutively elevated Ha-Ras protein levels can directly stimulate Smad2/3 signalling and collagen I accumulation independently of TGFβ neo-synthesis and activation. This finding therefore implicates the Ha-Ras pathway with the early onset of fibrosis in SSc and implicitly identifies new therapeutic targets in SSc.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。