Internalization of HMGB1 (High Mobility Group Box 1) Promotes Angiogenesis in Endothelial Cells

HMGB1(高迁移率族蛋白1)的内化促进内皮细胞的血管生成

阅读:4
作者:Jiaoli Lan #, Haihua Luo #, Rong Wu, Juan Wang, Biying Zhou, Yun Zhang, Yong Jiang, Jia Xu

Approach and results

Using green fluorescent protein-tagged HMGB1 to stimulate endothelial cells, we demonstrated HMGB1 internalization via dynamin and RAGE (receptor for advanced glycation end products)-dependent signaling. Using a fluorescence assay, we detected internalized protein fusion to lysosomes, followed by activation of CatB (cathepsin B) and CatL (cathepsin L). The latter promoted the release of VEGF (vascular endothelial growth factor)-A and endoglin and upregulated the capacities of cell migration, proliferation, and tube formation in endothelial cells. We identified that the cytokine-induced fragment-a key functional domain in HMGB1-mediates the internalization and angiogenic function of HMGB1. We further confirmed that HMGB1 internalization also occurs in vivo in endothelial cells and promotes angiogenesis in mouse femoral artery ligation. Conclusions: In this study, we identified a novel pathway of HMGB1 internalization-induced angiogenesis in endothelial cells. This finding sheds light on the regulatory role of inflammatory factors in angiogenesis through cell internalization and opens a new door to understand the relationship between inflammation and angiogenesis in ischemic diseases.

Conclusions

In this study, we identified a novel pathway of HMGB1 internalization-induced angiogenesis in endothelial cells. This finding sheds light on the regulatory role of inflammatory factors in angiogenesis through cell internalization and opens a new door to understand the relationship between inflammation and angiogenesis in ischemic diseases.

Objective

In patients with peripheral artery disease, blockages in arterioles <1 mm cannot be treated surgically, and there are currently few effective medicines. Studies have shown that inflammation in ischemic tissue is related to injury recovery and angiogenesis, but insufficient attention has been paid to this area. Studies have suggested that HMGB1 (high mobility group protein 1), which is released by ischemic tissue, promotes angiogenesis, but the mechanism is not entirely clear. In this study, we tested the internalization of HMGB1 in endothelial cells and investigated a novel proangiogenic pathway. Approach and

Results

Using green fluorescent protein-tagged HMGB1 to stimulate endothelial cells, we demonstrated HMGB1 internalization via dynamin and RAGE (receptor for advanced glycation end products)-dependent signaling. Using a fluorescence assay, we detected internalized protein fusion to lysosomes, followed by activation of CatB (cathepsin B) and CatL (cathepsin L). The latter promoted the release of VEGF (vascular endothelial growth factor)-A and endoglin and upregulated the capacities of cell migration, proliferation, and tube formation in endothelial cells. We identified that the cytokine-induced fragment-a key functional domain in HMGB1-mediates the internalization and angiogenic function of HMGB1. We further confirmed that HMGB1 internalization also occurs in vivo in endothelial cells and promotes angiogenesis in mouse femoral artery ligation. Conclusions: In this study, we identified a novel pathway of HMGB1 internalization-induced angiogenesis in endothelial cells. This finding sheds light on the regulatory role of inflammatory factors in angiogenesis through cell internalization and opens a new door to understand the relationship between inflammation and angiogenesis in ischemic diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。