Induction of osteoclast formation by LOX mutant (LOXG473A) through regulation of autophagy

LOX 突变体 (LOXG473A) 通过调节自噬诱导破骨细胞形成

阅读:4
作者:Bo Zhang, Chenglin Luo, Wenjin Xiao

Background

Lysyl oxidase (LOX) has been identified to modulate osteoclast activity, so we explored the role of LOXG473A, the highest frequency single nucleotide polymorphism in LOX, in osteoclast formation and its potential relationship to autophagy.

Conclusions

LOX mutant (LOXG473A) might promote osteoclast formation for RAW264.7 by enhancing autophagy via the AMPK/mTOR pathway, which is a new direction for bone disease research.

Methods

The ability of the LOX mutant, LOXG473A, to promote autophagy and osteoclast formation was evaluated in the pre-osteoclast cell line RAW264.7. Furthermore, autophagy-related protein expression and autophagosomes were detected by western blot and electron microscopy, respectively. Simultaneously, osteoclast formation and resorption ability were also detected using TRAP staining assay and bone resorption assay. In addition, the osteoclast-related proteins and mRNAs, as well as p-AMPKα and p-mTOR proteins, were further evaluated by western blot and qPCR assays.

Results

Autophagy inhibitor 3-MA suppressed the Beclin-1 and ATG5 protein levels and the ratio of LC3-II to LC3-I, as well as autophagosome formation in RAW264.7 transfected with the MUT plasmid and enhanced p62 protein expression. Simultaneously, 3-MA also reduced osteoclast formation and resorption, as well as the F-actin ring level of osteoclasts. In addition, 3-MA inhibited osteoclast-related protein and mRNA expression, including NFATC1, ACP5, CTSK. And the autophagy-related pathway protein p-AMPKα was increased and p-mTOR was reduced by 3-MA treatment. However, autophagy agonist RAPA reversed the effect of 3-MA on RAW264.7 with LOXG473A mutation, indicating that promoting autophagy could enhance the ability of LOXG473A to induce osteoclast formation. Conclusions: LOX mutant (LOXG473A) might promote osteoclast formation for RAW264.7 by enhancing autophagy via the AMPK/mTOR pathway, which is a new direction for bone disease research.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。