Zoledronic acid inhibits osteoclast differentiation and function through the regulation of NF-κB and JNK signalling pathways

唑来膦酸通过调节 NF-κB 和 JNK 信号通路抑制破骨细胞分化和功能

阅读:4
作者:Xiao-Lin Huang, Lie-Yu Huang, Yu-Ting Cheng, Fang Li, Qian Zhou, Chao Wu, Qian-Hui Shi, Zhi-Zhong Guan, Jian Liao, Wei Hong

Abstract

It is well known that extensive osteoclast formation plays a key role in osteoporosis in post‑menopausal women and the elderly. The suppression of extensive osteoclastogenesis and bone resorption may be an effective preventive strategy for osteoporosis. Zoledronic acid (ZOL) has been indicated to play an essential role in regulating bone mineral density and has already been used in large clinical trials. However, the effects of ZOL on osteoclastogenesis remain to be fully elucidated. Therefore, the present study aimed to determine the effects of ZOL on osteoclastogenesis, and to explore the corresponding signalling pathways. By using a cell viability assay, as well as in vitro osteoclastogenesis, immunofluorescence and resorption pit assays, we demonstrated that ZOL (0.1‑5 µM) suppressed receptor activator of nuclear factor‑κB ligand (RANKL)‑induced osteoclast differentiation and bone resorptive activity. Furthermore, western blot analysis and reverse transcription‑quantitative PCR indicated that ZOL inhibited the RANKL‑induced activation of NF‑κB and the phosphorylation of JNK in RAW264.7 cells, and subsequently decreased the expression of osteoclastogenesis‑associated genes, including calcitonin receptor, tartrate‑resistant acid phosphatase and dendritic cell‑specific transmembrane protein. ZOL inhibited osteoclast formation and resorption in vitro by specifically suppressing NF‑κB and JNK signalling. On the whole, the findings of this study indicate that ZOL may serve as a potential agent for the treatment of osteoclast‑associated diseases, including osteoporosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。