Botulinum toxin type A prevents the phenotypic transformation of fibroblasts induced by TGF‑β1 via the PTEN/PI3K/Akt signaling pathway

型肉毒毒素通过 PTEN/PI3K/Akt 信号通路阻止 TGF-β1 诱导的成纤维细胞表型转化

阅读:5
作者:Xue Zhang, Dong Lan, Shuhua Ning, Hongxia Jia, Sisi Yu

Abstract

Hypertrophic scar (HS) is a common type of dermatosis. Botulinum toxin type A (BTXA) can exert an anti‑HS effect; however, the regulatory mechanisms underlying this effect remain unclear. Thus, the aim of this study was to examine the effects of BTXA on phosphatase and tensin homolog deleted on chromosome ten (PTEN) expression and the fibroblast phenotypic transformation induced by transforming growth factor (TGF)‑β1, which is an important regulatory factor involved in the process of HS. For this purpose, fibroblasts were treated with various concentrations of BTXA and then treated with 10 ng/ml of TGF‑β1 with gradient concentrations of BTXA. The proliferation and apoptosis of fibroblasts were measured by cell counting kit‑8 assay (CCK‑8) and flow cytometry, respectively. PTEN methylation was analyzed by methylation‑specific PCR (MSP) and DNA methyltransferase (DNMT) activity was determined using a corresponding kit. RT‑qPCR and western blot analysis were performed to detect the transcription and translation levels. The results revealed that BTXA suppressed the proliferation and increased the apoptosis of fibroblasts treated with TGF‑β1 in a dose‑dependent manner. BTXA in combination with TGF‑β1 suppressed the expression of molecules related to the extracellular matrix (ECM), epithelial‑mesenchymal transition (EMT) and apoptosis. BTXA reduced the PTEN methylation level and downregulated the expression levels of methylation‑associated genes. BTXA also inhibited the phosphorylation of phosphoinositide 3‑kinase (PI3K) and Akt. On the whole, the findings of this study indicate that BTXA may inhibit fibroblast phenotypic transformation by regulating PTEN methylation and the phosphorylation of related pathways. The findings of this study can provide a theoretical basis for HS treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。