Tetramethylpyrazine protects retinal ganglion cells against H2O2‑induced damage via the microRNA‑182/mitochondrial pathway

四甲基吡嗪通过 microRNA-182/线粒体通路保护视网膜神经节细胞免受 H2O2 诱导的损伤

阅读:4
作者:Xinmin Li, Qiuli Wang, Yanfan Ren, Xiaomin Wang, Huaxu Cheng, Hua Yang, Baojun Wang

Abstract

Glaucoma is the leading cause of irreversible blindness worldwide; the apoptosis of the retinal ganglion cells (RGCs) is a hallmark of glaucoma. Tetramethylpyrazine (TMP) is the main active component of Ligusticum wallichii Franchat, and has been demonstrated to improve a variety of injuries through its antioxidative and antiapoptotic properties. However, these effects of TMP on glaucoma have not been studied. The present study aimed to investigate the potential role of TMP in glaucoma and to elucidate its possible mechanisms responsible for these effects. An in vitro model was generated, in which primary RGCs (PRGCs) were treated with H2O2. Our study revealed that TMP protected against H2O2‑induced injury to PRGCs, as evidenced by enhanced cell viability, reduced caspase 3 activity and decreased cell apoptosis. We also reported that TMP treatment inhibited reactive oxygen species (ROS) production and malondialdehyde levels, but upregulated the antioxidative enzyme superoxide dismutase. In particular, TMP significantly increased the expression of microRNA‑182‑5p (miR‑182) in H2O2‑treated PRGCs, which was selected as the target miRNA for further research. In addition, our findings suggested that the protective effects of TMP on H2O2‑induced injury were attenuated by knockdown of miR‑182. The results of a luciferase reporter assay demonstrated that Bcl‑2 interacting protein 3 (BNIP3), an effector of mitochondria‑mediated apoptosis, was a direct target of miR‑182. In addition, TMP treatment significantly decreased the expression of BNIP3, Bax, cleaved‑caspase‑3 and cleaved‑poly(ADP‑ribose)polymerase, but increased that of Bcl‑2. Also, TMP treatment decreased the release of cytochrome c from mitochondria and improved mitochondrial membrane potential in H2O2‑treated RGCs. Of note, the inhibitory effects of TMP on the mitochondrial apoptotic pathway were suggested to be reversed by knockdown of miR‑182. Collectively, our findings provide novel evidence that TMP protects PRGCs against H2O2‑induced damage through suppressing apoptosis and oxidative stress via the miR‑182/mitochondrial apoptotic pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。