p53-mediated delayed NF-κB activity enhances etoposide-induced cell death in medulloblastoma

p53 介导的延迟 NF-κB 活性增强依托泊苷诱导的髓母细胞瘤细胞死亡

阅读:5
作者:D Meley, D G Spiller, M R H White, H McDowell, B Pizer, V Sée

Abstract

Medulloblastoma (MB) is an embryonic brain tumour that arises in the cerebellum. Using several MB cell lines, we have demonstrated that the chemotherapeutic drug etoposide induces a p53- and caspase-dependent cell death. We have observed an additional caspase-independent cell death mechanism involving delayed nuclear factor κB (NF-κB) activity. The delayed induction was controlled by a p53-dependent transcription step and the production of death receptors (especially CD95/Fas). We further demonstrated that in both MB and glioblastoma (GM) cell lines, in which the p53 pathway was not functional, no p65 activation could be detected upon etoposide treatment. MB cell lines that have mutations in p53 or NF-κB are either less sensitive (NF-κB mutant) or even completely resistant (p53 mutant) to chemotherapeutic intervention. The optimal cell death was only achieved when both p53 and NF-κB were switched on. Taken together, our results shed light on the mechanism of NF-κB activation by etoposide in brain tumours and show that the genetic background of MB and GM cells determines their sensitivity to chemotherapy and has to be taken into account for efficient therapeutic intervention.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。