The TRPC channel blocker SKF 96365 inhibits glioblastoma cell growth by enhancing reverse mode of the Na(+) /Ca(2+) exchanger and increasing intracellular Ca(2+)

TRPC 通道阻滞剂 SKF 96365 通过增强 Na(+) /Ca(2+) 交换器的逆向模式和增加细胞内 Ca(2+) 来抑制胶质母细胞瘤细胞的生长

阅读:4
作者:M Song, D Chen, S P Yu

Background and purpose

SKF 96365 is well known for its suppressing effect on human glioblastoma growth by inhibiting pre-activated transient receptor potential canonical (TRPC) channels and Ca(2+) influx. The effect of SKF 96363 on glioblastoma cells, however, may be multifaceted and this possibility has been largely ignored. Experimental approach: The effects of SKF 96365 on cell cycle and cell viability of cultured human glioblastoma cells were characterized. Western blot, Ca(2+) imaging and patch clamp recordings were used to delineate cell death mechanisms. siRNA gene knockdown provided additional evidence. Key

Purpose

SKF 96365 is well known for its suppressing effect on human glioblastoma growth by inhibiting pre-activated transient receptor potential canonical (TRPC) channels and Ca(2+) influx. The effect of SKF 96363 on glioblastoma cells, however, may be multifaceted and this possibility has been largely ignored. Experimental approach: The effects of SKF 96365 on cell cycle and cell viability of cultured human glioblastoma cells were characterized. Western blot, Ca(2+) imaging and patch clamp recordings were used to delineate cell death mechanisms. siRNA gene knockdown provided additional evidence. Key

Results

SKF 96365 repressed glioblastoma cell growth via increasing intracellular Ca(2+) ([Ca(2+) ]i ) irrespective of whether TRPC channels were blocked or not. The effect of SKF 96365 primarily resulted from enhanced reverse operation of the Na(+) /Ca(2+) exchanger (NCX) with an EC50 of 9.79 μM. SKF 96365 arrested the glioblastoma cells in the S and G2 phases and activated p38-MAPK and JNK, which were all prevented by the Ca(2+) chelator BAPTA-AM or EGTA. The expression of NCX in glioblastoma cells was significantly higher than in normal human astrocytes. Knockdown of the NCX1 isoforms diminished the effect of SKF 96365 on glioblastoma cells. Conclusions and implications: At the same concentration, SKF 96365 blocks TRPC channels and enhances the reverse mode of the NCX causing [Ca(2+) ]i accumulation and cytotoxicity. This finding suggests an alternative pharmacological mechanism of SKF 96365. It also indicates that modulation of the NCX is an effective method to disrupt Ca(2+) homeostasis and suppress human glioblastoma cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。