A 3D‑scaffold of PLLA induces the morphological differentiation and migration of primary astrocytes and promotes the production of extracellular vesicles

PLLA 的 3D 支架诱导原代星形胶质细胞的形态分化和迁移,并促进细胞外囊泡的产生

阅读:6
作者:Francesco Carfì Pavia, Maria Antonietta Di Bella, Valerio Brucato, Valeria Blanda, Francesca Zummo, Ilenia Vitrano, Carlo Maria Di Liegro, Giulio Ghersi, Italia Di Liegro, Gabriella Schiera

Abstract

The present study analyzed the ability of primary rat astrocytes to colonize a porous scaffold, mimicking the reticular structure of the brain parenchyma extracellular matrix, as well as their ability to grow, survive and differentiate on the scaffold. Scaffolds were prepared using poly‑L‑lactic acid (PLLA) via thermally‑induced phase separation. Firstly, the present study studied the effects of scaffold morphology on the growth of astrocytes, evaluating their capability to colonize. Specifically, two different morphologies were tested, which were obtained by changing the polymer concentration in the starting solution. The structures were characterized by scanning electron microscopy, and a pore size of 20 µm (defined as the average distance between the pore walls) was detected. For comparison, astrocytes were also cultured in the traditional 2D culture system that we have been using since 2003. Then the effects of different substrates, such as collagen I and IV, and fibronectin were analyzed. The results revealed that the PLLA scaffolds, coated with collagen IV, served as very good matrices for astrocytes, which were observed to adhere, grow and colonize the matrix, acquiring their typical morphology. In addition, under these conditions, they secreted extracellular vesicles (EVs) that were compatible in size with exosomes. Their ability to produce exosomes was also suggested by transmission electron microscopy pictures which revealed both EVs and intracellular structures that could be interpreted as multivesicular bodies. The fact that these cells were able to adapt to the PLLA scaffold, together with our previous results, which demonstrated that brain capillary endothelial cells can grow and differentiate on the same scaffold, could support the future use of 3D brain cell co‑culture systems.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。