beta-Adrenergic receptor activation induces internalization of cardiac Cav1.2 channel complexes through a beta-arrestin 1-mediated pathway

β-肾上腺素受体激活通过 β-arrestin 1 介导的途径诱导心脏 Cav1.2 通道复合物的内化

阅读:6
作者:Rachele Lipsky, Essie M Potts, Sima T Tarzami, Akil A Puckerin, Joanne Stocks, Alison D Schecter, Eric A Sobie, Fadi G Akar, María A Diversé-Pierluissi

Abstract

Voltage-dependent calcium channels (VDCCs) play a pivotal role in normal excitation-contraction coupling in cardiac myocytes. These channels can be modulated through activation of beta-adrenergic receptors (beta-ARs), which leads to an increase in calcium current (I(Ca-L)) density through cardiac Ca(v)1 channels as a result of phosphorylation by cAMP-dependent protein kinase A. Changes in I(Ca-L) density and kinetics in heart failure often occur in the absence of changes in Ca(v)1 channel expression, arguing for the importance of post-translational modification of these channels in heart disease. The precise molecular mechanisms that govern the regulation of VDCCs and their cell surface localization remain unknown. Our data show that sustained beta-AR activation induces internalization of a cardiac macromolecular complex involving VDCC and beta-arrestin 1 (beta-Arr1) into clathrin-coated vesicles. Pretreatment of myocytes with pertussis toxin prevents the internalization of VDCCs, suggesting that G(i/o) mediates this response. A peptide that selectively disrupts the interaction between Ca(V)1.2 and beta-Arr1 and tyrosine kinase inhibitors readily prevent agonist-induced VDCC internalization. These observations suggest that VDCC trafficking is mediated by G protein switching to G(i) of the beta-AR, which plays a prominent role in various cardiac pathologies associated with a hyperadrenergic state, such as hypertrophy and heart failure.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。