Doxorubicin-induced testicular damage is related to PARP-1 signaling molecules in mice

阿霉素诱导的小鼠睾丸损伤与PARP-1信号分子有关

阅读:10
作者:Nazli Ece Gungor-Ordueri, Nilay Kuscu, Arda Tasatargil, Durmus Burgucu, Meric Karacan, Ciler Celik-Ozenci

Background

Doxorubicin (DOX), is a chemotherapeutic agent, which evokes oxidative stress and cell apoptosis in testicular tissue. It is known that the activation of the nuclear enzyme poly (ADP-ribose) polymerase (PARP), leading to apoptosis induced by DOX. The

Conclusions

Our study indicates that DOX-induced testicular damage may be related to over-activation of PARP-1. PJ34 application was effective in preventing severe testicular damage caused by DOX-injection and may be considered for fertility protection against DOX-induced testicular damage.

Methods

Firstly, we assessed the activation of PARP pathway after DOX-induction at various hours by immunohistochemistry and western blot analysis. Secondly, we evaluated the role of PARP pathway in DOX-induced testicular damage, sperm motility, and fertility with pharmacological inhibition of PARP by using PJ34. Finally, we aimed to correlate a functional relationship between PARP-1 and DOX using PARP-1 knockout mice in DOX-induced testicular damage. Doxorubicin levels in plasma and testis tissue were also assessed.

Results

In DOX-induced group; PARP-1, PAR and apoptotic pathway protein expressions, increased significantly. In DOX + PJ34 group; PAR, cytochrome c, and AIF levels decreased significantly. Testicular weights, sperm motility, and mean the number of pups per litter decreased in DOX-induced group after 28 days, however they were similar to the control group in DOX-PJ34 group. In PARP-1 KO group, seminiferous tubule morphology was impaired significantly after 28 days of DOX-administration. Conclusions: Our study indicates that DOX-induced testicular damage may be related to over-activation of PARP-1. PJ34 application was effective in preventing severe testicular damage caused by DOX-injection and may be considered for fertility protection against DOX-induced testicular damage.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。