Characterization of dopamine releasable and reserve pools in Drosophila larvae using ATP/P2X2 -mediated stimulation

使用 ATP/P2X2 介导的刺激表征果蝇幼虫中的多巴胺释放池和储备池

阅读:5
作者:Ning Xiao, B Jill Venton

Abstract

Dopaminergic signaling pathways are conserved between mammals and Drosophila, but the factors important for maintaining the functional pool of synaptic dopamine are not fully understood in Drosophila. In this study, we characterized the releasable and reserve dopamine pools in Drosophila larvae using ATP/P2X2 -mediated stimulation. Dopamine release was stable with stimulations performed at least every 5 min but decayed with stimulations performed 2 min apart or less, indicating the replenishment of the releasable pool occurred on a time scale between 2 and 5 min. Dopamine synthesis or uptake was pharmacologically inhibited with 3-iodotyrosine and cocaine, respectively, to evaluate their contributions to maintain the releasable dopamine pool. We found that both synthesis and uptake were needed to maintain the releasable dopamine pool, with synthesis playing a major part in long-term replenishment and uptake being more important for short-term replenishment. These effects of synthesis and uptake on different time scales in Drosophila are analogous to mammals. However, unlike in mammals, cocaine did not activate a reserve pool of dopamine in Drosophila when using P2X2 stimulations. Our study shows that both synthesis and uptake replenish the releasable pool, providing a better understanding of dopamine regulation in Drosophila. The maintenance of the releasable dopamine pool was examined in Drosophila larva. Both synthesis and uptake were needed to maintain the releasable dopamine pool, with synthesis being most important on a longer time scale and uptake on a shorter time scale. Dopamine release was stimulated by applying ATP which activated P2X2 channels specifically expressed in dopaminergic neurons.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。