Background
Bisphosphonate-related osteonecrosis of the jaw (BRONJ) is one of the most often seen side effects in patients treated with nitrogen-containing bisphosphonates (BPs), a post-surgical non-healing wound condition. Since calcium phosphate (CP) compounds are able to adsorb zoledronate (ZOL) when used as a drug delivery vehicle, we aimed to verify if these ceramics might have a potential protective effect for soft tissues surrounding surgical osseous wounds. (2)
Conclusions
BCP interaction with ZOL reduces or abolishes its toxicity in HGF. This finding represents a potential solution for BRONJ in the case of patients undergoing therapy with ZOL.
Methods
The chemical reaction between ZOL and CP compounds was evaluated through ultraviolet-visible spectroscopy and elemental analysis. A primary culture of human gingival fibroblasts (HGF) was established as a model to evaluate the cytotoxicity of the association of ZOL (5-500 μM) and of ZOL/biphasic calcium phosphates (BCP). Metabolic activity, cell viability, types of cell death, the cell cycle through, and the migration ability of human gingival fibroblasts were evaluated. (3)
Results
ZOL was adsorbed by biphasic calcium phosphate compounds in an aqueous solution. The HGF were sensitive to ZOL toxicity; nevertheless, ZOL/BCP showed a significant protective effect regarding metabolic activity, cell viability, and cell migration. (4) Conclusions: BCP interaction with ZOL reduces or abolishes its toxicity in HGF. This finding represents a potential solution for BRONJ in the case of patients undergoing therapy with ZOL.
