Effects of luminal thymol on epithelial transport in human and rat colon

管腔百里酚对人类和大鼠结肠上皮运输的影响

阅读:5
作者:Izumi Kaji, Shin-ichiro Karaki, Atsukazu Kuwahara

Abstract

Gut lumen is continually exposed to a great variety of agents, including noxious compounds. Chemical receptors that detect the luminal environment are thought to play an important role as sensors and to modulate gastrointestinal functions. Recently, it has been reported that odorant receptors (ORs) are expressed in the small intestinal mucosa and that odorants stimulate serotonin secretion. However, ion transport in the responses to odorants has rarely been discussed, particularly in relation to the large intestine. In the present study, we examined the effects of the OR ligand thymol on ion transport in human and rat colonic epithelia using an Ussing chamber. In the mucosal-submucosal preparations, the mucosal addition of thymol evoked anion secretion concentration dependently. In addition, dextran (4 kDa) permeability was enhanced by the mucosal treatment with thymol. The response to thymol was not affected by tetrodotoxin (TTX) or piroxicam treatments in human or rat colon. Thymol-evoked electrogenic anion secretion was abolished under Ca(2+)-free conditions or mucosal treatment with transient receptor potential (TRP) A1 blocker (HC-030031). Pretreatment of thymol did not affect electrical field stimulation-evoked anion secretion but significantly attenuated short-chain fatty acid-evoked secretion in a concentration-dependent manner. OR1G1 and TRPA1 expression was investigated in isolated colonic mucosa by RT-PCR. The present results provide evidence that the OR ligand thymol modulates epithelial permeability and electrogenic anion secretion in human and rat colon. The anion secretion by luminal thymol is most likely mediated by direct activation of TRPA1 channel. We suggest that the sensing and responding to odorants in the colon also plays a role in maintaining intestinal homeostasis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。