(-)-Gossypol suppresses the growth of human prostate cancer xenografts via modulating VEGF signaling-mediated angiogenesis

(-)-棉酚通过调节 VEGF 信号介导的血管生成来抑制人类前列腺癌异种移植瘤的生长

阅读:7
作者:Xiufeng Pang, Yuanyuan Wu, Yougen Wu, Binbin Lu, Jing Chen, Jieqiong Wang, Zhengfang Yi, Weijing Qu, Mingyao Liu

Abstract

(-)-Gossypol, a natural BH3-mimetic and small-molecule Bcl-2 inhibitor, shows promise in ongoing phase II clinical trials for human cancers. However, whether (-)-gossypol plays functional roles in tumor angiogenesis has not been directly elucidated yet. In this study, we showed that (-)-gossypol dose dependently inhibited the expression of VEGF, Bcl-2, and Bcl-xL in human prostate cancer cells (PC-3 and DU 145) and primary cultured human umbilical vascular endothelial cells (HUVEC) in vitro. Notably, the growth of human prostate tumor PC-3 xenografts in mice was significantly suppressed by (-)-gossypol at a dosage of 15 mg/kg/d. This inhibitory action of (-)-gossypol in vivo was largely dependent on suppression of angiogenesis in the solid tumors, where VEGF expression and microvessel density were remarkably decreased. Furthermore, (-)-gossypol inhibited VEGF-induced chemotactic motility and tubulogenesis in HUVECs and human microvascular endothelial cells and suppressed microvessel sprouting from rat aortic rings ex vivo. When examined for the mechanism, we found that (-)-gossypol blocked the activation of VEGF receptor 2 kinase with the half maximal inhibitory concentration of 2.38 μmol/L in endothelial cells. Consequently, the phosphorylation of key intracellular proangiogenic kinases induced by VEGF was all suppressed by the treatment, such as Src family kinase, focal adhesion kinase, extracellular signal-related kinase, and AKT kinase. Taken together, the present study shows that (-)-gossypol potently inhibits human prostate tumor growth through modulating VEGF signaling pathway, which further validates its great potential in clinical practice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。