Leucine-rich repeat kinase-2 (LRRK2) modulates paraquat-induced inflammatory sickness and stress phenotype

富含亮氨酸重复激酶 2 (LRRK2) 调节百草枯诱发的炎症疾病和应激表型

阅读:6
作者:Chris Rudyk, Zach Dwyer, Shawn Hayley; CLINT membership

Background

Leucine-rich repeat kinase 2 (LRRK2) is a common gene implicated in Parkinson's disease (PD) and is also thought to be fundamentally involved in numerous immune functions. Thus, we assessed the role of LRRK2 in the context of the effects of the environmental toxicant, paraquat, that has been implicated in PD and is known to affect inflammatory processes.

Conclusion

We are the first to show the importance of LRRK2 in the peripheral neurotoxic and stressor-like effects of paraquat. These data are consistent with LRRK2 playing a role in the general inflammatory tone and stressor effects induced by environmental toxicant exposure.

Methods

Male LRRK2 knockout (KO) and transgenic mice bearing the G2019S LRRK2 mutation (aged 6-8 months) or their littermate controls were exposed to paraquat (two times per week for 3 weeks), and sickness measures, motivational scores, and total home-cage activity levels were assessed. Following sacrifice, western blot and ELISA assays were performed to see whether or not LRRK2 expression would alter processes related to plasticity, immune response processes, or the stress response.

Results

Paraquat-induced signs of sickness, inflammation (elevated IL-6), and peripheral toxicity (e.g., organ weight) were completely prevented by LRRK2 knockout. In fact, LRRK2 knockout dramatically reduced not only signs of illness, but also the motivational (nest building) and home-cage activity deficits induced by paraquat. Although LRRK2 deficiency did not affect the striatal BDNF reduction that was provoked by paraquat, it did blunt the corticosterone elevation induced by paraquat, raising the possibility that LRRK2 may modulate aspects of the HPA stress axis. Accordingly, we found that transgenic mice bearing the G2019S LRRK2 mutation had elevated basal corticosterone, along with diminished hippocampal 5-HT1A levels.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。