S100A8, An Oocyte-Specific Chemokine, Directs the Migration of Ovarian Somatic Cells During Mouse Primordial Follicle Assembly

S100A8 是一种卵母细胞特异性趋化因子,在小鼠原始卵泡组装过程中指导卵巢体细胞的迁移

阅读:7
作者:Zhen Teng, Chao Wang, Yijing Wang, Kun Huang, Xi Xiang, Wanbao Niu, Lizhao Feng, Lihua Zhao, Hao Yan, Hua Zhang, Guoliang Xia

Abstract

In the mammalian ovaries, the primordial follicle pool determines the reproductive capability over the lifetime of a female. The primordial follicle is composed of two cell members, namely the oocyte and the pre-granulosa cells that encircle the oocyte. However, it is unclear what factors are involved in the reorganization of the two distinct cells into one functional unit. This study was performed to address this issue. Firstly, in an in vitro reconstruction system, dispersed ovarian cells from murine fetal ovaries at 19.0 days post coitum (dpc) reassembled into follicle-like structures, independent of the physical distance between the cells, implying that either oocytes or ovarian somatic cells (OSCs) were motile. We then carried out a series of transwell assay experiments, and determined that it was in fact 19.0 dpc OSCs (as opposed to oocytes), which exhibited a significant chemotactic response to both fetal bovine serum and oocytes themselves. We observed that S100A8, a multi-functional chemokine, may participate in the process as it is mainly expressed in oocytes within the cysts/plasmodia. S100A8 significantly promoted the number of migrating OSCs by 2.5 times in vitro, of which 66.9% were FOXL2 protein-positive cells, implying that the majority of motile OSCs were pre-granulosa cells. In addition, an S100A8-specific antibody inhibited the formation of follicle-like reconstruction cell mass in vitro. And, the primordial follicle formation was reduced when S100a8-specific siRNA was applied onto in vitro cultured 17.5 dpc ovary. Therefore, S100A8 could be a chemokine of oocyte origin, which attracts OSCs to form the primordial follicles.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。