Antitumor effects of curcumin on the proliferation, migration and apoptosis of human colorectal carcinoma HCT‑116 cells

姜黄素对人结肠癌HCT‑116细胞增殖、迁移和凋亡的抑制作用

阅读:4
作者:Lei Xiang #, Bin He #, Qiang Liu, Dongdong Hu, Wenjing Liao, Ruochan Li, Xinyi Peng, Qian Wang, Gang Zhao

Abstract

Curcumin is the main component of the Chinese herbal plant turmeric, which has been demonstrated to possess antitumor and other pharmacological properties. The aim of the present study was to investigate the effects of curcumin on the viability, migration and apoptosis of human colorectal carcinoma HCT‑116 cells, and to explore the underlying molecular mechanisms. In addition, it was investigated whether the antitumor effect of curcumin on HCT‑116 cells could match that of the chemotherapeutic drug 5‑fluorouracil (5‑FU). HCT‑116 cells were treated with curcumin (10, 20 and 30 µM) and 5‑FU (500 µM), and cell viability and proliferation were detected by Cell Counting Kit‑8 and colony formation assays, respectively. The migration and invasion of treated cells were determined using Transwell and carboxyfluorescein succinimidyl amino ester fluorescent labeling assays. Cell cycle distribution and apoptosis rates were detected by flow cytometry. Furthermore, cell morphology changes associated with apoptosis were observed by fluorescence microscopy with acridine orange/ethidium bromide dual staining. To investigate the possible underlying molecular mechanisms, the gene and protein levels of Fas, Fas‑associated via death domain (FADD), caspase‑8, caspase‑3, matrix metalloproteinase (MMP)‑9, nuclear factor (NF)‑κB, E‑cadherin and claudin‑3 were detected using quantitative PCR analysis, zymography and western blotting. The results revealed that curcumin markedly inhibited the viability and proliferation of HCT‑116 cells in a dose‑ and time‑dependent manner. The migration, aggregation and invasion of HCT‑116 cells into the lungs of mice were decreased by curcumin treatment in a dose‑dependent manner. S‑phase arrest and gradually increased apoptotic rates of HCT‑116 cells were observed with increasing curcumin concentrations. Additionally, the mRNA and protein levels of apoptosis‑associated proteins (Fas, FADD, caspase‑8 and caspase‑3) and E‑cadherin in HCT‑116 cells were upregulated following treatment with curcumin in a dose‑dependent manner. By contrast, the expression of migration‑associated proteins, including MMP‑9, NF‑κB and claudin‑3, was downregulated with increasing curcumin concentrations. These data suggested that the inhibitory effect of curcumin on HCT‑116 cells may match that of 5‑FU. Therefore, curcumin induced cell apoptosis and inhibited tumor cell metastasis by regulating the NF‑κB signaling pathway, and its therapeutic effect may be comparable to that of 5‑FU.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。