Nicotinamide phosphoribosyltransferase postpones rat bone marrow mesenchymal stem cell senescence by mediating NAD+-Sirt1 signaling

烟酰胺磷酸核糖基转移酶通过介导 NAD+-Sirt1 信号延缓大鼠骨髓间充质干细胞衰老

阅读:5
作者:Chenchen Pi #, Yue Yang #, Yanan Sun, Huan Wang, Hui Sun, Mao Ma, Lin Lin, Yingai Shi, Yan Li, Yulin Li, Xu He

Abstract

In vitro replicative senescence affects MSC characteristics and functionality, thus severely restricting their application in regenerative medicine and MSC-based therapies. Previously, we found that MSC natural senescence is accompanied by altered intracellular nicotinamide adenine dinucleotide (NAD+) metabolism, in which Nampt plays a key role. However, whether Nampt influences MSC replicative senescence is still unclear. Our study showed that Nampt expression is down-regulated during MSC replicative senescence. Nampt depletion via a specific Nampt inhibitor FK866 or Nampt knockdown in early passage MSCs led to enhanced senescence as indicated by senescence-like morphology, reduced proliferation, and adipogenic and osteogenic differentiation, and increased senescence-associated-β-galactosidase activity and the expression of the senescence-associated factor p16INK4a. Conversely, Nampt overexpression ameliorated senescence-associated phenotypic features in late passage MSCs. Further, Nampt inhibition resulted in reduced intracellular NAD+ content, NAD+/NADH ratio, and Sirt1 activity, whereas overexpression had the opposite effects. Exogenous intermediates involved in NAD+ biosynthesis not only rescued replicative senescent MSCs but also alleviated FK866-induced MSC senescence. Thus, Nampt suppresses MSC senescence via mediating NAD+-Sirt1 signaling. This study provides novel mechanistic insights into MSC replicative senescence and a promising strategy for the severe shortage of cells for MSC-based therapies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。