Hsa_circ_0136666 mediates the antitumor effect of curcumin in colorectal carcinoma by regulating CXCL1 via miR-1301-3p

Hsa_circ_0136666通过miR-1301-3p调控CXCL1介导姜黄素在结直肠癌中的抗肿瘤作用

阅读:4
作者:Shi Chen, Wei Li, Chen-Gong Ning, Feng Wang, Li-Xing Wang, Chen Liao, Feng Sun

Aim

To determine whether hsa_circ_0136666 involvement in curcumin-triggered CRC progression was mediated by sponging miR-1301-3p.

Background

This study investigate the anti-tumor effect of curcumin and whether its mediated by hsa_circ_0136666 through miR-1301-3p/CXCL1 in colorectal carcinoma (CRC). Through multiple experiments, we have drawn the

Conclusion

Curcumin inhibited CRC development through the hsa_circ_0136666/miR-1301-3p/CXCL1 axis, hinting at a novel treatment option for curcumin to prevent CRC development.

Methods

Cell counting kit-8, colony-forming cell, 5-ethynyl-2'-deoxyuridine, and flow cytometry assays were carried out to determine cell proliferation, apoptosis, and cell cycle progression. Real-time quantitative polymerase chain reaction quantified hsa_circ_0136666, miR-1301-3p, and chemokine (C-X-C motif) ligand 1 (CXCL1), and western blot analysis determined CXCL1, B-cell lymphoma-2 (Bcl-2), and Bcl-2 related X protein (Bax) protein levels. CircBank or starbase software was first used for the prediction of miR-1301-3p binding with hsa_circ_0136666 and CXCL1, followed by RNA pull-down, RNA immunoprecipitation, and dual-luciferase reporter assay validation. In vivo experiments were implemented in a murine xenograft model.

Results

Curcumin blocked CRC cell proliferation but boosted apoptosis. Moreover, elevated hsa_circ_0136666 Levels were observed in CRC cells, which were reduced by curcumin. In vitro, hsa_circ_0136666 overexpression abolished the antitumor activity of CRC cells. Mechanical analysis revealed the ability of hsa_circ_0136666 to sponge miR-1301-3p to modulate CXCL1 levels.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。