Molecular mechanisms of quinalizarin induces apoptosis and G0/G1 cell cycle of human esophageal cancer HCE-4 cells depends on MAPK, STAT3, and NF-κB signaling pathways

喹茜素诱导人食管癌HCE-4细胞凋亡及G0/G1细胞周期调控机制及MAPK、STAT3、NF-κB信号通路

阅读:6
作者:Yan-Qing Zang, Yu-Qing Zhai, Yan-Yu Feng, Xue-Ying Ju, Feng Zuo

Abstract

Quinalizarin (Quina) is one of the main components of many herbal medicines and has good anti-tumor activity. However, the exact mode of cytotoxic action and signaling pathways on Quina in human esophageal cancer has not yet been confirmed. In this study, we explored the anticancer effect of Quina against human esophageal cancer HCE-4 cells and the underlying mechanisms. The results of the Cell Counting Kit-8 (CCK-8) assay showed that Quina inhibited the viability of human esophageal cancer HCE-4 cells in a dose-dependent and time-dependent manner. It also inhibited HCE-4 cells proliferation and induced apoptosis by increasing the levels of Bad, caspase-3, and PARP, decreasing the level of Bcl-2. The results of the cell cycle analysis suggested that Quina arrested HCE-4 cells in the G0/G1 cycle by downregulating cyclin-dependent (CDK) 2/4, cyclin D1/E and upregulating the levels of p21 and p27. We also found that Quina activated mitogen-activated protein kinase (MAPK) and inhibited the signal transducer and activator of transcription-3 (STAT3) and nuclear factor kappa B (NF-κB) signaling pathways. Furthermore, Quina significantly increased intracellular reactive oxygen species (ROS) level. The pretreatment of N-acetyl-L-cysteine (NAC) blocked the apoptosis induced by Quina and inhibited the activities of MAPK, STAT3, and NF-κB signaling pathways. These results indicate that Quina induces the apoptosis in HCE-4 cells, which is via accumulating ROS generation and regulating MAPK, STAT3, and NF-κB. In conclusion, this study demonstrated that Quina have good therapeutic effects on human esophageal cancer cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。