Retinal Structure and Function in a Knock-in Mouse Model for the FAM161A- p.Arg523∗ Human Nonsense Pathogenic Variant

FAM161A- p.Arg523∗ 人类无义致病变异的敲入小鼠模型中的视网膜结构和功能

阅读:8
作者:Chen Matsevich, Prakadeeswari Gopalakrishnan, Alexey Obolensky, Eyal Banin, Dror Sharon, Avigail Beryozkin

Conclusions

The Fam161a - p.Arg512∗ KI mouse model is characterized by widespread retinal degeneration with relatively slow progression. Surprisingly, disease onset is delayed and progression is slower compared with the previously reported knock-out model. The common human null mutation in the KI mouse model is potentially amenable for correction by translational read-through-inducing drugs and by gene augmentation therapy and RNA editing, and can serve to test these treatments as a first step toward possible application in patients. Financial disclosures: The author(s) have no proprietary or commercial interest in any materials discussed in this article.

Methods

Homozygous Fam161a p.Arg512∗ KI mice were generated by Cyagen Biosciences. Visual acuity (VA) was evaluated using optomotor tracking response and retinal function was assessed by electroretinography (ERG). Retinal structure was examined in vivo using OCT and fundus autofluorescence imaging. Retinal morphometry was evaluated by histologic and immunohistochemical (IHC) analyses. Main outcome measures: Visual and retinal function assessments, clinical imaging examinations, quantitative histology, and IHC studies of KI as compared with wild-type (WT) mice retinas.

Purpose

Pathogenic variants in FAM161A are the most common cause of retinitis pigmentosa in Israel. Two founder pathogenic variants explain the vast majority of cases of Jewish origin, 1 being a nonsense variant (p.Arg523∗). The aim of this study was to generate a knock-in (KI) mouse model harboring the corresponding p.Arg512∗ pathogenic variant and characterize the course of retinal disease. Design: Experimental study of a mouse animal model. Subjects/participants/controls: A total of 106 Fam161a knock-in mice and 29 wild-type mice with C57BL/6J background particiapted in this study.

Results

The KI model was generated by replacing 3 bp, resulting in p.Arg512∗. Homozygous KI mice that had progressive loss of VA and ERG responses until the age of 18 months, with no detectable response at 21 months. OCT showed complete loss of the outer nuclear layer at 21 months. Fundus autofluorescence imaging revealed progressive narrowing of blood vessels and formation of patchy hyper-autofluorescent and hypo-autofluorescent spots. Histologic analysis showed progressive loss of photoreceptor nuclei. Immunohistochemistry staining showed Fam161a expression mainly in photoreceptors cilia and the outer plexiform layer (OPL) in WT mice retinas, whereas faint expression was evident mainly in the cilia and OPL of KI mice. Conclusions: The Fam161a - p.Arg512∗ KI mouse model is characterized by widespread retinal degeneration with relatively slow progression. Surprisingly, disease onset is delayed and progression is slower compared with the previously reported knock-out model. The common human null mutation in the KI mouse model is potentially amenable for correction by translational read-through-inducing drugs and by gene augmentation therapy and RNA editing, and can serve to test these treatments as a first step toward possible application in patients. Financial disclosures: The author(s) have no proprietary or commercial interest in any materials discussed in this article.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。