PTK6 Potentiates Gemcitabine-Induced Apoptosis by Prolonging S-phase and Enhancing DNA Damage in Pancreatic Cancer

PTK6 通过延长胰腺癌的 S 期和增强 DNA 损伤来增强吉西他滨诱导的细胞凋亡

阅读:4
作者:Hiroaki Ono, Marc D Basson, Hiromichi Ito

Abstract

Protein Tyrosine Kinase 6 (PTK6) is a non-receptor-type tyrosine kinase known to be expressed in various cancers, including pancreatic cancer. The role of PTK6 in cancer chemoresistance remains unclear. Therefore, it was hypothesized that PTK6 mechanistically regulates gemcitabine resistance in pancreatic cancer. Gemcitabine treatment stimulated endogenous PTK6 overexpression in MIAPaCa2 and Panc1 cells. PTK6 gene silencing increased cell survival after gemcitabine treatment and decreased apoptosis, whereas PTK6 overexpression decreased cell survival and increased apoptosis. Selection for gemcitabine resistance revealed substantially lower PTK6 expression in the gemcitabine-resistant subclones compared with the parental lines, while restoring PTK6 rescued gemcitabine sensitivity. Gemcitabine induced phosphorylation of H2AX (γ-H2AX) and ataxia-telangiectasia mutated kinase (pATM), specific markers for DNA double-strand breaks. Both gemcitabine-induced phosphorylation of H2AX and ATM were reduced by PTK6 knockdown and increased by PTK6 overexpression. PTK6 overexpression also increased the S-phase fraction 48 hours after gemcitabine treatment. Although gemcitabine activated both caspase-8 (CASP8) and caspase-9 (CASP9), the effect of PTK6 on gemcitabine-induced apoptosis required CASP8 but not CASP9. In mouse xenografts, PTK6 overexpression in subcutaneous tumors attenuated tumor growth after gemcitabine treatment. In conclusion, PTK6 prolongs S-phase and increases the ability of gemcitabine to cause DNA damage in vitro and in vivo. Implications: PTK6 affects cell cycle and DNA damage, thus making it an important therapeutic target to improve the outcomes of patients with pancreatic cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。