Role of c-Abl kinase in DNA mismatch repair-dependent G2 cell cycle checkpoint arrest responses

c-Abl 激酶在 DNA 错配修复依赖性 G2 细胞周期检查点停滞反应中的作用

阅读:5
作者:Mark W Wagner, Long Shan Li, Julio C Morales, Cristi L Galindo, Harold R Garner, William G Bornmann, David A Boothman

Abstract

Current published data suggest that DNA mismatch repair (MMR) triggers prolonged G(2) cell cycle checkpoint arrest after alkylation damage from N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) by activating ATR (ataxia telangiectasia-Rad3-related kinase). However, analyses of isogenic MMR-proficient and MMR-deficient human RKO colon cancer cells revealed that although ATR/Chk1 signaling controlled G(2) arrest in MMR-deficient cells, ATR/Chk1 activation was not involved in MMR-dependent G(2) arrest. Instead, we discovered that disrupting c-Abl activity using STI571 (Gleevec, a c-Abl inhibitor) or stable c-Abl knockdown abolished MMR-dependent p73alpha stabilization, induction of GADD45alpha protein expression, and G(2) arrest. In addition, inhibition of c-Abl also increased the survival of MNNG-exposed MMR-proficient cells to a level comparable with MMR-deficient cells. Furthermore, knocking down GADD45alpha (but not p73alpha) protein levels affected MMR-dependent G(2) arrest responses. Thus, MMR-dependent G(2) arrest responses triggered by MNNG are dependent on a human MLH1/c-Abl/GADD45alpha signaling pathway and activity. Furthermore, our data suggest that caution should be taken with therapies targeting c-Abl kinase because increased survival of mutator phenotypes may be an unwanted consequence.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。