Mouse Rankl expression is regulated in T cells by c-Fos through a cluster of distal regulatory enhancers designated the T cell control region

小鼠 Rankl 表达在 T 细胞中受 c-Fos 通过一组远端调节增强子(称为 T 细胞控制区)调节

阅读:9
作者:Kathleen A Bishop, Heidi M Coy, Robert D Nerenz, Mark B Meyer, J Wesley Pike

Abstract

Receptor activator of NF-κB ligand (Rankl) is a TNF-like factor that induces the formation of osteoclasts responsible for bone resorption. Although T cell activation up-regulates this gene, the molecular mechanism of its transcriptional control remains unknown. We used ChIP-chip analysis in mouse primary T cells and a T cell hybridoma to define the regulatory enhancers responsible for this up-regulation and to characterize their properties. Elevated H3/H4 acetylation and increased RNA polymerase II density were evident at mRL-D5, a known enhancer located 76 kb upstream of the TSS, as well as at a cluster of regulatory sites located even further upstream between -123 to -156 kb, termed the T cell control region (TCCR). Based upon the ability of calcium signaling and MAPK inhibitors to block Rankl expression, we conducted further ChIP-chip analysis of the transcriptional mediators c-Fos, NF-κB, and Nfat. T cell activation induced c-Fos binding at the mRL-D5 enhancer and within the TCCR. The interaction of NF-κB was observed at the transcriptional start site and at mRL-D5. Both mRL-D5 and segments of the TCCR exhibited robust transcriptional activity in reporter assays, and site-specific mutagenesis of c-Fos and Nfat elements abrogated reporter activity, suggesting a role for both factors in the control of enhancer-mediated Rankl transcription. Finally, chromosome conformation capture analysis confirmed that mRL-D5 and segments of the TCCR were located in proximity to the Rankl gene promoter and thus potentially able to influence directly Rankl gene promoter activity. We conclude that both mRL-D5 and the TCCR represent control segments that play an integral role in Rankl expression in T cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。