1950 MHz Electromagnetic Fields Ameliorate Aβ Pathology in Alzheimer's Disease Mice

1950 MHz 电磁场改善阿尔茨海默病小鼠的 Aβ 病理

阅读:6
作者:Ye Ji Jeong, Ga-Young Kang, Jong Hwa Kwon, Hyung-Do Choi, Jeong-Ki Pack, Nam Kim, Yun-Sil Lee, Hae-June Lee

Abstract

The involvement of radiofrequency electromagnetic fields (RF-EMF) in the neurodegenerative disease, especially Alzheimer's disease (AD), has received wide consideration, however, outcomes from several researches have not shown consistency. In this study, we determined whether RF-EMF influenced AD pathology in vivo using Tg-5xFAD mice as a model of AD-like amyloid β (Aβ) pathology. The transgenic (Tg)-5xFAD and wild type (WT) mice were chronically exposed to RF-EMF for 8 months (1950 MHz, SAR 5W/kg, 2 hrs/day, 5 days/week). Notably, chronic RFEMF exposure significantly reduced not only Aβ plaques, APP, and APP carboxyl-terminal fragments (CTFs) in whole brain including hippocampus and entorhinal cortex but also the ratio of Aβ42 and Aβ40 peptide in the hippocampus of Tg-5xFAD mice. We also found that parenchymal expression of β-amyloid precursor protein cleaving enzyme 1(BACE1) and neuroinflammation were inhibited by RF-EMF exposure in Tg-5xFAD. In addition, RF-EMF was shown to rescue memory impairment in Tg-5xFAD. Moreover, gene profiling from microarray data using hippocampus of WT and Tg- 5xFAD following RF-EMF exposure revealed that 5 genes (Tshz2, Gm12695, St3gal1, Isx and Tll1), which are involved in Aβ, are significantly altered inTg-5xFAD mice, exhibiting different responses to RF-EMF in WT or Tg-5xFAD mice; RF-EMF exposure in WT mice showed similar patterns to control Tg-5xFAD mice, however, RF-EMF exposure in Tg- 5xFAD mice showed opposite expression patterns. These findings indicate that chronic RF-EMF exposure directly affects Aβ pathology in AD but not in normal brain. Therefore, RF-EMF has preventive effects against AD-like pathology in advanced AD mice with a high expression of Aβ, which suggests that RF-EMF can have a beneficial influence on AD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。