Condensational particle growth device for reliable cell exposure at the air-liquid interface to nanoparticles

冷凝颗粒生长装置,用于将细胞可靠地暴露在气液界面的纳米颗粒中

阅读:7
作者:Trevor B Tilly, Ryan X Ward, Jiva K Luthra, Sarah Robinson, Arantzazu Eiguren-Fernandez, Gregory S Lewis, Richard L Salisbury, John A Lednicky, Tara L Sabo-Attwood, Saber M Hussain, Chang-Yu Wu

Abstract

A first-of-its-kind aerosol exposure device for toxicity testing, referred to as the Dosimetric Aerosol in Vitro Inhalation Device (DAVID), was evaluated for its ability to deliver airborne nanoparticles to lung cells grown as air-liquid interface (ALI) cultures. For inhalation studies, ALI lung cell cultures exposed to airborne nanoparticles have more relevancy than the same cells exposed in submerged culture because ALI culture better represents the respiratory physiology and consequently more closely reflect cellular response to aerosol exposure. In DAVID, water condensation grows particles as small as 5 nm to droplets sized > 5 μm for inertial deposition at low flow rates. The application of DAVID for nanotoxicity analysis was evaluated by measuring the amount and variability in the deposition of uranine nanoparticles and then assessing the viability of ALI cell cultures exposed to clean-air under the same operational conditions. The results showed a low coefficient of variation, < 0.25, at most conditions, and low variability in deposition between the exposure wells, trials, and operational flow rates. At an operational flow rate of 4 LPM, no significant changes in cell viability were observed, and minimal effects observed at 6 LPM. The reliable and gentle deposition mechanism of DAVID makes it advantageous for nanoparticle exposure.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。