Oligo-carrageenan kappa increases glucose, trehalose and TOR-P and subsequently stimulates the expression of genes involved in photosynthesis, and basal and secondary metabolisms in Eucalyptus globulus

寡聚卡拉胶卡帕可增加葡萄糖、海藻糖和 TOR-P,进而刺激桉树中光合作用、基础代谢和次生代谢相关基因的表达

阅读:5
作者:Silvia Saucedo, Alberto González, Melissa Gómez, Rodrigo A Contreras, Daniel Laporte, Claudio A Sáez, Gustavo Zúñiga, Alejandra Moenne

Background

It has been previously shown that oligo-carrageenan (OC) kappa increases growth, photosynthesis and activities of enzymes involved in basal and secondary metabolisms in Eucalyptus globulus. However, it is not known whether OC kappa may induce the activation of TOR pathway and the increase in expression of genes encoding proteins involved in photosynthesis and enzymes of basal and secondary metabolisms.

Conclusions

The stimulation of growth induced by OC kappa in E. globulus trees is due, at least in part, to activation of TOR pathway and the increase in expression of genes encoding proteins involved in photosynthesis and enzymes of basal metabolism.

Results

E. globulus trees were sprayed on leaves with water (control) or with OC kappa 1 mg mL- 1, once a week, four times in total, and cultivated for 17 additional weeks (21 weeks in total). Treated trees showed a higher level of net photosynthesis than controls, beginning at week 3, a higher height, beginning at week 9, and those differences remained until week 21. In addition, treated trees showed an increase in the level of glucose beginning at week 1, trehalose at weeks 1-3, and in TOR-P level at week 1-2. On the other hand, transcripts encoding proteins involved in photosynthesis, and enzymes involved in glucose accumulation, C, N and S assimilation, and synthesis of secondary metabolites began at weeks 3-4 and with additional peaks at weeks 5-6, 8-11,13-14 and 17-19. Thus, OC kappa induced initial increases in glucose, trehalose and TOR-P levels that were followed by oscillatory increases in the level of transcripts coding for proteins involved in photosynthesis, and in basal and secondary metabolisms suggesting that initial increases in glucose, trehalose and TOR-P may trigger activation of gene expression. Conclusions: The stimulation of growth induced by OC kappa in E. globulus trees is due, at least in part, to activation of TOR pathway and the increase in expression of genes encoding proteins involved in photosynthesis and enzymes of basal metabolism.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。