Guarea microcarpa C. DC. extract inhibits NLRP3 inflammasome by suppressing its ATPase activity

Guarea microcarpa C. DC.提取物通过抑制其ATPase活性来抑制NLRP3炎症小体

阅读:5
作者:Sojung Lee, Sojin Yun, Hyeyun Yang, Nahyun Lee, YeJi Kim, Sumin Lee, Nelson A Zamora, Silvia Soto Montero, Dong-Keun Yi, Soo-Yong Kim, Sangho Choi, Taesoo Choi, Man S Kim, Yoonsung Lee, Yong Hwan Park

Aim of the study

Although various species of the Guarea genus are known for their medicinal properties, comprehensive data on their anti-inflammatory effects remain limited. Therefore, we investigated the NLRP3 inflammasome-inhibiting effects of the Guarea genus in this study. Materials and

Conclusion

Our results demonstrate the anti-inflammatory effects of GM via suppressing the NLRP3 inflammasome. Therefore, GM can be a potential therapeutic candidate for various inflammatory diseases caused by aberrant NLRP3 inflammasome activation.

Methods

To evaluate the anti-inflammatory activities of 18 members of the Guarea genus, we treated NLRP3 inflammasome activators with their extracts in LPS-primed J774A.1 and THP-1 cells. Cell viability was determined by water soluble tetrazolium salt (WST) and cytokine production, protein expression, and nuclear fractionation were determined by western blotting. Reactive oxygen species (ROS) production and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) oligomerization were measured using confocal microscopic analysis. Inflammation-induced zebrafish was used in the in vivo experiments.

Results

Among the 18 Guarea members tested, Guarea microcarpa C. DC. extract (GM) exhibited no cytotoxicity and specifically suppressed the activation of the NLRP3 inflammasome, but not of the AIM2 or NLRC4 inflammasomes, by inhibiting the ATPase activity of NLRP3. This was achieved without affecting NF-κB signaling, potassium efflux, or intracellular ROS production, all of which are involved in NLRP3 activation. The reduced ATPase activity of NLRP3 led to decreased ASC oligomerization. Furthermore, GM exhibited anti-inflammatory effects in vivo. Additionally, GM treatment alleviated inflammation at the organismal level in an LPS-induced inflammation model using zebrafish embryos.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。