Extracellular-superoxide dismutase DNA methylation promotes oxidative stress in homocysteine-induced atherosclerosis

细胞外超氧化物歧化酶 DNA 甲基化促进同型半胱氨酸诱发的动脉粥样硬化中的氧化应激

阅读:9
作者:Shengchao Ma, Guanjun Lu, Qing Zhang, Ning Ding, Yuzhen Jie, Hui Zhang, Lingbo Xu, Lin Xie, Xiaoling Yang, Huiping Zhang, Yideng Jiang

Abstract

In the present study, we investigate the effect of homocysteine (Hcy) on extracellular-superoxide dismutase (EC-SOD) DNA methylation in the aorta of mice, and explore the underlying mechanism in macrophages, trying to identify the key targets of Hcy-induced EC-SOD methylation changes. ApoE -/- mice are fed different diets for 15 weeks, EC-SOD and DNA methyltransferase 1 (DNMT1) expression levels are detected by RT-PCR and western blot analysis. EC-SOD methylation levels are assessed by ntMS-PCR. After EC-SOD overexpression or knockdown in macrophages, following the transfection of macrophages with pEGFP-N1-DNMT1, the methylation levels of EC-SOD are detected. Our data show that the concentrations of Hcy and the area of atherogenic lesions are significantly increased in ApoE -/- mice fed with a high-methionine diet, and have a positive correlation with the levels of superoxide anions, which indicates that Hcy-activated superoxide anions enhance the development of atherogenic lesions. EC-SOD expression is suppressed by Hcy, and the content of superoxide anion is increased when EC-SOD is silenced by RNAi in macrophages, suggesting that EC-SOD plays a major part in oxidative stress induced by Hcy. Furthermore, the promoter activity of EC-SOD is increased following transfection with the -1/-1100 fragment, and EC-SOD methylation level is significantly suppressed by Hcy, and more significantly decreased upon DNMT1 overexpression. In conclusion, Hcy may alter the DNA methylation status and DNMT1 acts as the essential enzyme in the methyl transfer process to disturb the status of EC-SOD DNA methylation, leading to decreased expression of EC-SOD and increased oxidative stress and atherosclerosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。