Inhibition of PAD4-mediated NET formation by cl-amidine prevents diabetes development in nonobese diabetic mice

cl-amidine 抑制 PAD4 介导的 NET 形成可预防非肥胖糖尿病小鼠患上糖尿病

阅读:5
作者:Yiming Shen, Qi You, Yiling Wu, Jie Wu

Abstract

Many evidences indicated that neutrophil extracellular traps (NETs) play pathogenic roles in type 1 diabetes (T1D). Peptidylarginine deiminases 4 (PAD4) has been proved to be indispensable for generation of NETs. In the current study, we investigated whether oral administration of cl-amidine, an effective inhibitor of PAD4, protects non-obese diabetic (NOD) mice from T1D development. Female NOD mice were orally administrated with cl-amidine (5 μg/g body weight) from the age of 8 weeks up to 16 weeks. It showed that cl-amidine inhibit NET formation in vitro and in vivo. The onset of T1D was delayed nearly 8 weeks and the incidence of disease was significantly decreased in cl-amidine treated mice compared with the control group. Moreover, cl-amidine decreased the serum levels of anti-citrullinated peptide antibody (ACPA) and anti-neutrophil cytoplasmic antibodies (ANCA) in NOD mice. Also, it decreased generation of T1D autoantibodies such as glutamic acid decarboxylase antibody (GADA), tyrosine phosphatase-related islet antigen-2 antibody (IA2A) and zinc transporter 8 antibody (ZnT8A), which were strongly correlated with the reduced serum PAD4 and MPO-DNA levels. Furthermore, cl-amidine administration inhibited pancreatic inflammation and increased frequency of regulatory T cells in pancreatic lymph nodes (PLNs). In addition, cl-amidine improved gut barrier dysfunction and decreased the serum level of lipopolysaccharide (LPS), which was positively correlated with the NETs markers (PAD4 and MPO-DNA) and T1D autoantibody IA2A. In conclusion, our data showed that orally delivery of cl-amidine effectively prevent T1D development and suggested inhibition of PAD4-dependent NET formation as a potential way of clinical treatment in T1D.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。