Identification of genetic networks that act in the somatic cells of the testis to mediate the developmental program of spermatogenesis

鉴定睾丸体细胞中起作用的遗传网络,介导精子发生的发育程序

阅读:15
作者:Michael John Fairchild, Fayeza Islam, Guy Tanentzapf

Abstract

Spermatogenesis is a dynamic developmental process requiring precisely timed transitions between discrete stages. Specifically, the germline undergoes three transitions: from mitotic spermatogonia to spermatocytes, from meiotic spermatocytes to spermatids, and from morphogenetic spermatids to spermatozoa. The somatic cells of the testis provide essential support to the germline throughout spermatogenesis, but their precise role during these developmental transitions has not been comprehensively explored. Here, we describe the identification and characterization of genes that are required in the somatic cells of the Drosophila melanogaster testis for progress through spermatogenesis. Phenotypic analysis of candidate genes pinpointed the stage of germline development disrupted. Bioinformatic analysis revealed that particular gene classes were associated with specific developmental transitions. Requirement for genes associated with endocytosis, cell polarity, and microtubule-based transport corresponded with the development of spermatogonia, spermatocytes, and spermatids, respectively. Overall, we identify mechanisms that act specifically in the somatic cells of the testis to regulate spermatogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。