The Effects of Age at Weaning and Length of Lipid Supplementation on Growth, Metabolites, and Marbling of Young Steers

断奶年龄和补充脂质时间对小公牛生长、代谢物和大理石花纹的影响

阅读:4
作者:Jessie E Tipton, Linda K Lewis, Ralph E Ricks, Sebastian Maresca, Sebastian Lopez Valiente, Nathan M Long

Abstract

The objective of this study was to determine how weaning age, days on supplements, and lipid supplementation affected the growth and marbling deposition of steers. Steers from a single sire were early weaned (n = 24) at 150 ± 11 days of age or traditionally weaned (n = 24) at 210 ± 11 days of age. Steers were assigned to control (n = 12/weaning group) or an isocaloric, isonitrogenous rumen by-pass lipid (RBL, n = 12/weaning group) for either 45 (n = 6/treatment) or 90 (n=6/treatment) days then harvested. Steer body weight (BW) was recorded on days -14 and -7, then BW and blood samples were collected on days 0, 22, 45, 66, and 90. The right rib section of each animal was collected for proximate analysis. Longissimus dorsi from RBL steers had increased lipids compared with control steers (3.6 ± 0.2 vs. 2.4 ± 0.2% on a wet basis; p < 0.0001). Steers fed for 90 days had greater (p = 0.02) concentrations of Longissimus dorsi lipid (3.3 ± 0.2%) than those fed for 45 days (2.7 ± 0.2%). There was a weaning age by treatment by days on feed interaction for intramuscular adipocyte diameter (p = 0.02) in which early weaned RBL fed for 90 days steers had an increased adipocyte diameter compared to the early weaned control fed for 90 and early weaned fed for 45 days steers with all other treatment groups as intermediates. Supplementation of RBL increased concentrations of C18:2, C20:4, and total fatty acids on days 45 and 90 (p ≤ 0.05). Data show that RBL supplementation increased the marbling content of the Longissimus dorsi. Furthermore, a longer period of supplementation resulted in increased adipose diameter.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。