Acetyl-CoA carboxylase 2 suppression rescues human proximal tubular cells from palmitic acid induced lipotoxicity via autophagy

乙酰辅酶 A 羧化酶 2 抑制通过自噬挽救人类近端肾小管细胞免受棕榈酸诱导的脂毒性

阅读:5
作者:Wei Xin, Xu Zhao, Lei Liu, Ying Xu, Zhaoping Li, Liyong Chen, Xiaojie Wang, Fan Yi, Qiang Wan

Abstract

Autophagy is a catabolic process that degrades damaged proteins and organelles in mammalian cells. Although acetyl-CoA carboxylase 2 (ACC2) plays a crucial role in the fatty acid metabolism, it keeps unknown whether ACC2 is associated with autophagic activity. The present work was designed to investigate the effects of ACC2 on palmitic acid (PA) induced lipotoxicity in human proximal tubular cells and the putative role of autophagy in this process. Here we show that autophagy was induced by PA in HK-2 cells. Moreover, the PA induced autophagy was regulated both by ACC2 suppression and CPTI inhibitor treatment, which represent an altered fatty acid β-oxidation. And the knockdown of ACC2 reduced PA-induced autophagy and thus protects the cells from PA-induced lipotoxicity with attenuated lipid accumulation and rescued cell viability. Collectively, the present study proposed a novel autophagy-involved mechanism of PA-induced renal lipotoxicity and provided potential therapeutic strategy by modulating lipid β-oxidation for diabetic nephropathy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。