Modelling disease risk for amyloid A (AA) amyloidosis in non-human primates using machine learning

使用机器学习模拟非人类灵长类动物淀粉样蛋白 A (AA) 变性的患病风险

阅读:7
作者:Eric T Leung, Michael J Raboin, Jessica McKelvey, Adam Graham, Anne Lewis, Kamm Prongay, Aaron M Cohen, Amanda Vinson

Conclusion

Machine learning is a powerful approach to identifying macaques at risk of AA amyloidosis, which is accompanied by increased circulating SAA and altered lipoprotein profiles.

Methods

We conducted a retrospective study using 86 cases and 163 controls matched for age and sex. We performed data reduction on 62 clinical, pathological and demographic variables, and applied multivariate modelling and model selection with cross-validation. To test the performance of our final model, we applied it to a replication cohort of 2,775 macaques.

Objective

Amyloid A (AA) amyloidosis is found in humans and non-human primates, but quantifying disease risk prior to clinical symptoms is challenging. We applied machine learning to identify the best predictors of amyloidosis in rhesus macaques from available clinical and pathology records. To explore potential biomarkers, we also assessed whether changes in circulating serum amyloid A (SAA) or lipoprotein profiles accompany the disease.

Results

The strongest predictors of disease were colitis, gastrointestinal adenocarcinoma, endometriosis, arthritis, trauma, diarrhoea and number of pregnancies. Sensitivity and specificity of the risk model were predicted to be 82%, and were assessed at 79 and 72%, respectively. Total, low density lipoprotein and high density lipoprotein cholesterol levels were significantly lower, and SAA levels and triglyceride-to-HDL ratios were significantly higher in cases versus controls.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。